383 Big-Block Engine Build, Part Two - Dyno tuning our budget 383 - Mopar Muscle Magazine

383 Big-Block Engine Build, Part Two

Last month we built a mild street engine using a factory Chrysler 383 block, crankshaft, rods, and cylinder heads combined with some aftermarket goodies from Comp Cams and Summit Racing Equipment, and put it on the dyno to see what kind of horsepower and torque it could make. And while our numbers were significantly better than the factory rating for the 383 Magnum or Super Commando, we knew there was more to be had through efficient dyno tuning of the big-block. This month we'll show you how we gained 58 horsepower and 35 lb-ft of torque by spending a day on the dyno.

The factory horsepower rating for Mopar's 383 four-barrel varies by car model and year of production, but the highest rating the 383 ever had was 335 horsepower as the base engine of first generation Road Runners. Using a factory '68 block, crankshaft, connecting rods, and .030-inch over cast pistons combined with stock 906 cylinder heads for our engine, we're basically duplicating the '68 Road Runner engine. The only advantages our 10:1 compression 383 has over the factory version are the intake manifold, mild overbore, Comp camshaft, and Comp rocker gear. This is a very economical combination to build, costing less than $2,500 in parts and machine work, and is likely similar to the engine in many of your cars.

One of the questions we're often asked is whether or not dyno time is worth the money when it comes to an engine build. And while the answer to this is somewhat dependent on your budget, and the application, we generally favor dyno testing for a number of reasons. First, it's a lot of work to put an engine in a car, and if you have a leak or mechanical problem with the engine while on the dyno, it makes repairs a lot easier. Next, tuning an engine for peak power and testing multiple bolt-on parts requires accurate measurement, and an engine dyno is the only way to precisely measure changes to horsepower and torque. Sure you can do this at the dragstrip, but most street cars are limited by traction and the results of testing can be somewhat ambiguous. Because an engine dyno is a precise tool and removes the variable of the car from the equation, the results are accurate and replicable.

Another nice feature of dyno time is being able to break in the engine. Even better, a slight load can be placed on the dyno as the rpm is varied, which is a proven way to seat piston rings quickly. We performed the break-in procedure for our 383 on the Superflow engine dynamometer at Auto Performance Engines, checking for leaks or unusual noises, drained the oil and checked the valve lash. With new oil and a new oil filter installed, we were ready to make some dyno pulls on our big-block.

Knowing the parts inside an engine aren't really put under much of a strain until a load is put on them, the first real dyno pull on an engine always makes us the most nervous. It is at this time that any weak link, defect, or substandard part can be exposed, so we're always cautious during the first pull. For our testing we filled the fuel cell with BP 93 octane unleaded fuel, set the acceleration rate of the dyno to 300 rpm/second, and made our first pull from 3,500 to 5,500 rpm. On what was admittedly a conservative tune-up with a 750 vacuum secondary Holley carburetor and only 32 degrees total ignition timing, peak torque was 380 lb-ft at 4,600 rpm with a peak horsepower number of 360 horsepower at 5,500 rpm. Having already beaten the numbers of the factory 383, we were ready to make some tuning changes in the search for more power.

The first change we made to our tune-up was to install a 750-cfm Holley HP double-pumper carburetor, and pull the engine from 3,500 rpm to 5,800 rpm with the ignition timing at 35 degrees. This pull resulted in a noticeable increase in torque, up by 9 lb-ft and 15 additional horsepower. Adding five degrees of ignition timing for a total advance of 40 degrees, we raised the upper rpm limit to 6,200 and another pull was made on the 383, netting 391 lb-ft of torque and 388 horsepower at 6,100 rpm. Thinking our little 383 might want more carburetor, we decided a change was in order.

During our dyno time, we actually tested six different carburetors on our 383, and will give you the details of that testing in an upcoming issue of Mopar Muscle. What that testing revealed is that this engine liked the Holley 850 double-pumper best, so we concentrated our efforts on tuning that carburetor. Also testing multiple carb spacers on our engine, we discovered our best power came with 87 jets in the Holley, a two-inch open spacer, and the ignition timing set at 42 degrees total advance. In this configuration, our big-block made 402 lb-ft of torque at 4,600 rpm, and 402 horsepower at 6,100 rpm, acting a little bigger than its 383 inches.

Having a couple of additional tricks up our sleeve, we decided to really optimize power by installing an electric drive on the water pump to get rid of the engine driven belt. While it isn't likely this modification would be performed on a street car, our engine did make an additional six lb-ft of torque, but horsepower wasn't changed. Next, we drained the 20W50 weight conventional oil from the engine and replaced it with 5W30 conventional motor oil. Since our 383 had oil pressure to spare (80 psi), running lighter oil is a good way to free up horsepower without sacrificing protection. The results of our next pull proved this theory, as the engine made its best numbers of 414 lb-ft of torque and 418.5 peak horsepower at a leisurely 5,900 rpm.

So, was our dyno time at Auto Performance Engines worth the expense and effort? In our case we found an additional 35 lb-ft of torque and an impressive 59 additional horsepower by tuning our 383 on the engine dyno. And while we may have been able to accomplish some of this with the engine in the car, it certainly would have made the work more difficult, and would have taken considerably more time. Additionally, we wouldn't have any measureable results without doing all of our testing under very controlled track conditions. Best of all, our engine is ready to be put in the car with confidence, knowing that at the turn of the key we'll have nearly 420 dyno-tuned horsepower at our disposal and ready to run.

Costs

BlockFree CrankshaftFree Cylinder HeadsFree with swap meet parts Comp flat-tappet camshaft and lifters$139.39 Comp PN 925-16 valve springs$116.95 Comp Ultra-Pro Magnum rockers$696.95 Edelbrock 383 Victor intake$259.95 Bore and Hone block with torque plates$200 Cylinder Head Work$250 Balance Rotating Assembly$200 Resize/True Rods and install bolts$200 Dyno TimeVaries by Shop and Region, $600-800 per day